Abstract
The mechanism by which the peptide exchange factor HLA-DM catalyzes peptide loading onto structurally homologous class II MHC proteins is an outstanding problem in antigen presentation. The peptide-loading reaction of class II MHC proteins is complex and includes conformational changes in both empty and peptide-bound forms in addition to a bimolecular binding step. By using a fluorescence energy transfer assay to follow the kinetics of peptide binding to the human class II MHC protein HLA-DR1, we find that HLA-DM catalyzes peptide exchange by facilitating a conformational change in the peptide-bound complex, and not by promoting the bimolecular MHC-peptide reaction or the conversion between peptide-receptive and -averse forms of the empty protein. Thus, HLA-DM serves essentially as a protein-folding or conformational catalyst.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have