Abstract

IntroductionThere is wide agreement that morphologic features and enhancement kinetics should be evaluated for MRI of the breast, although there has been no clear consensus concerning optimal temporal resolutions. The objective of this study was to investigate the optimal temporal resolution for the kinetic analysis of breast cancers. MethodsThirty-four patients with 34 enhancing lesions of breast cancer who underwent dynamic contrast-enhanced MRI (DCE-MRI) on a 3.0-T scanner were included in this retrospective study. DCE-MRI was performed with an original temporal resolution of 10-s, and the values of pharmacokinetic parameters (Ktrans, Ve, Kep, and area under the curve (AUC)) were compared with selected data of 30-s and 60-s time intervals. ResultsAmong the 34 lesions, 10 showed a wash out pattern, 16 showed a plateau pattern, and 8 showed a persistent enhancement pattern. The Ktrans value in the wash-out pattern was significantly higher than that of other time-intensity curve patterns (p < 0.01). The Kep and AUC also showed significant differences between the wash-out pattern and other types (p < 0.01). On comparing the perfusion parameters among different temporal resolutions, simulations showed that only the AUC differed significantly between the data acquired at a 10-s temporal resolution and that acquired at a 60-s time interval (p < 0.01). Although the comparison of the AUC between the 30-s and 60-s data also showed significant differences (p = 0.01), there was no significant difference between the 10-s and 30-s data (p = 0.17). ConclusionsDCE-MRI with a temporal resolution of 30-s preserves the kinetic information. Further prospective studies will be needed to investigate the trade-off between temporal and spatial resolution in DCE-MRI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call