Abstract

Estimates of blood volume and volume transfer constant are parameters commonly used to characterize hemodynamic properties of brain lesions. The purposes of this study were to compare values of volume transfer constant and estimates of blood volume in high-grade gliomas on a pixel-by-pixel basis to comprehend whether they provide different information and to compare estimates of blood volume obtained by dynamic contrast-enhanced MR imaging and dynamic susceptibility contrast-enhanced MR imaging. Thirty-two patients with biopsy-proved grade IV gliomas underwent dynamic contrast-enhanced MR imaging and dynamic susceptibility contrast-enhanced MR imaging, and parametric maps of volume transfer constant, plasma volume, and CBV maps were calculated. The Spearman rank correlation coefficients among matching values of CBV, volume transfer constant, and plasma volume were calculated on a pixel-by-pixel basis. Comparison of median values of normalized CBV and plasma volume was performed. Weak-but-significant correlation (P < .001) was noted for all comparisons. Spearman rank correlation coefficients were as follows: volume transfer constant versus CBV, ρ = 0.113; volume transfer constant versus plasma volume, ρ = 0.256; CBV versus plasma volume, ρ = 0.382. We found a statistically significant difference (P < .001) for the estimates of blood volume obtained by using dynamic contrast-enhanced MR imaging (mean normalized plasma volume, 13.89 ± 11.25) and dynamic susceptibility contrast-enhanced MR imaging (mean normalized CBV, 4.37 ± 4.04). The finding of a very weak correlation between estimates of microvascular density and volume transfer constant suggests that they provide different information. Estimates of blood volume obtained by using dynamic contrast-enhanced MR imaging are significantly higher than those obtained by dynamic susceptibility contrast-enhanced MR imaging in human gliomas, most likely due to the effect of contrast leakage.

Highlights

  • BACKGROUND AND PURPOSEEstimates of blood volume and volume transfer constant are parameters commonly used to characterize hemodynamic properties of brain lesions

  • We found a statistically significant difference (P Ͻ .001) for the estimates of blood volume obtained by using dynamic contrast-enhanced MR imaging and dynamic susceptibility contrast-enhanced MR imaging

  • Estimates of blood volume obtained by using dynamic contrast-enhanced MR imaging are significantly higher than those obtained by dynamic susceptibility contrast-enhanced MR imaging in human gliomas, most likely due to the effect of contrast leakage

Read more

Summary

Introduction

BACKGROUND AND PURPOSEEstimates of blood volume and volume transfer constant are parameters commonly used to characterize hemodynamic properties of brain lesions. The purposes of this study were to compare values of volume transfer constant and estimates of blood volume in high-grade gliomas on a pixel-by-pixel basis to comprehend whether they provide different information and to compare estimates of blood volume obtained by dynamic contrast-enhanced MR imaging and dynamic susceptibility contrast-enhanced MR imaging

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call