Abstract

This study addresses the kinematics, including position, velocity and acceleration analyses, of a modular spatial hyper-redundant manipulator built with a variable number of serially connected identical mechanical modules with autonomous motions. First, the kinematics of the base module, a three-legged in-parallel manipulator, is formulated using the theory of screws. After that, the results thus obtained, are applied recursively for accomplishing the kinematic analyses of the hyper-redundant manipulator at hand. A numerical exampled is included.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call