Abstract

This work presents a novel hyper-redundant manipulator. Such a manipulator is built with a variable number of tandem-assembled modules. Each module consists of a 3-dof parallel manipulator with asymmetric extremities in which moving platform possesses mixed motions with respect to the base platform. The manipulator's architecture is so simple that the forward position analysis is presented in closed-form solution, more specifically, in echelon-form solution. On the other hand, the velocity and acceleration analyses are carried out using the theory of screws. Finally, a case study consisting of solving the kinematic analysis of a 30-dof hyper-redundant manipulator is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.