Abstract
In this article, we develop the theory of k-factor Gegenbauer Autoregressive Moving Average (GARMA) process with infinite variance innovations which is a generalization of the stable seasonal fractional Autoregressive Integrated Moving Average (ARIMA) model introduced by Diongue et al. (2008). Stationarity and invertibility conditions of this new model are derived. Conditional Sum of Squares (CSS) and Markov Chains Monte Carlo (MCMC) Whittle methods are investigated for parameter estimation. Monte Carlo simulations are also used to evaluate the finite sample performance of these estimation techniques. Finally, the usefulness of the model is corroborated with the application to streamflow data for Senegal River at Bakel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.