Abstract

Insensitive munitions compounds, such as 2,4-dinitroanisole (DNAN), are replacing conventional explosives. DNAN is anaerobically reduced to 2,4-diaminoanisole (DAAN), a toxic aromatic amine. However, the removal of DAAN under different redox conditions is yet to be elucidated. Herein, we analyzed DAAN consumption in biotic and abiotic microcosms when exposed to different redox conditions (without added electron acceptor, without added electron acceptor but with pyruvate as a co-substrate, with sulfate, with nitrate, and with oxygen), using an anaerobic sludge as inoculum. We observed that DAAN autoxidation, an abiotic reaction, was significant in microaerobic environments. DAAN also reacted abiotically with heat-killed sludge up to a saturation limit of 67.4 μmol DAAN (g VSS heat-killed sludge)−1. Oxygen caused the fastest removal of DAAN in live sludge among the conditions tested. Treatments without added electron acceptors (with or without pyruvate) presented similar DAAN removal performances, although slower than the treatment with oxygen. Sulfate did not exhibit any effect on DAAN removal compared to the treatment without added electron acceptors. Nitrate, however, inhibited the process. An enrichment culture from the microcosms exposed to oxygen could be developed using DAAN as the sole substrate in microaerobic conditions. The enrichment profoundly changed the microbial community. Unclassified microorganisms accounted for 85% of the relative abundance in the enrichment culture, suggesting that DAAN microaerobic removal might have involved organisms that were not yet described. Our results suggest that DAAN microaerobic treatment can be coupled to DNAN anaerobic reduction in sludge, improving the treatment of DNAN-containing wastewaters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.