Abstract
Neurodevelopmental disorders (NDDs) are increasingly linked to genetic mutations that disrupt key neuronal processes. The KCNB2 gene encodes a crucial component of voltage-gated potassium channels, essential for regulating neuronal excitability and synaptic transmission. Mutations in KCNB2 typically alter potassium channel inactivation, leading to various NDDs, including autism spectrum disorders (ASD), intellectual disabilities (ID), and epilepsy. This narrative review synthesizes findings from genetic, molecular, and clinical studies on the KCNB2 gene and its role in NDDs. Relevant literature was identified through database searches in PubMed, Embase, PsycINFO, Scopus, and Web of Science, focusing on studies that examine KCNB2′s molecular mechanisms, pathogenic mutations, and clinical implications in NDDs. In addition to its role in excitability, KCNB2′s impact on cognitive processes, such as memory and attention, is considered, highlighting the need for further research. Potential interventions, including pharmacological modulation and gene therapy, are also discussed. Future research should focus on characterizing KCNB2 variants, expanding genetic screening, and advancing targeted therapies to improve outcomes for individuals affected by KCNB2-related disorders.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have