Abstract

The k-L turbulence model, where k is the turbulent kinetic energy and L represents the turbulent eddy scale length, is a two-equation turbulence model that has been proposed to simulate turbulence induced by Rayleigh-Taylor (RT) and Richtmyer Meshkov (RM) instabilities, which play an important role in the implosions of inertial confinement fusion (ICF) capsule targets. There are three free parameters in the k-L model, and in this paper, I calibrate them independently by comparing with RT and RM data from the linear electric motor (LEM) experiments together with classical Kelvin-Helmoholtz (KH) data. To perform this calibration, I numerically solved the equations of one-dimensional (1D) Lagrangian hydrodynamics, in a manner similar to that of contemporary ICF codes, together with the k-L turbulence model. With the three free parameters determined, I show that the k-L model is successful in describing both shear-driven and buoyancy-driven instabilities, capturing the experimentally observed separation between bubbles and spikes at high Atwood number for the RT case, as well as the temporal mix width recorded in RM shock tube experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.