Abstract

The vortex method is applied to simulations of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities. The numerical results from the vortex method agree well with analytic solutions and other numerical results. The bubble velocity in the RT instability converges to a constant limit, and in the RM instability, the bubble and spike have decaying growth rates, except for the spike of infinite density ratio. For both RT and RM instabilities, bubbles attain constant asymptotic curvatures. It is found that, for the same density ratio, the RT bubble has slightly larger asymptotic curvature than the RM bubble. The vortex sheet strength of the RM interface has different behavior than that of the RT interface. We also examine the validity of theoretical models by comparing the numerical results with theoretical predictions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.