Abstract
This paper reviews the development of a Josephson locked synthesizer (JoLoS) where a calibrator is used as a sine wave generator whose output is controlled by the calculable fundamental of the stepwise sinusoidal wave generated by a programmable Josephson junction array. Such a system combines the versatility of a calibrator with the stability and accuracy of the Josephson voltage standard. The accuracy of the JoLoS was confirmed by a high precision comparison with a pulse-driven Josephson voltage standard. This comparison showed agreement between the two systems of 0.3 μV V−1 at a frequency of 500 Hz and an rms amplitude of 100 mV. As an example of the calibration ability of the JoLoS, the calibration of a thermal transfer standard (TTS) is reported. This calibration is in good agreement with a calibration performed against a multi-junction thermal converter for voltages below 1 V and frequencies below 1 kHz. The agreement between the JoLoS and the calibrated TTS is better than 1 μV V−1 at 1 V. On the lowest voltage ranges, the uncertainties measured with the JoLoS are significantly smaller than the calibration uncertainties of the TTS. This result demonstrates the present potential of the JoLoS at voltages up to 1 V and frequencies up to 1 kHz.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have