Abstract

The role of Jacobian factors in free energy simulations is described. They provide a simple interpretation of ‘‘moment of inertia correction’’ and ‘‘dynamic stretch free energy’’ terms in such simulations. Since the relevant Jacobian factors can often be evaluated analytically by use of the configurational partition function of a polyatomic molecule, it is possible to subtract them from the simulation results when they make unphysical contributions. An important case arises in alchemical simulations that use a single topology method and introduce dummy particles to have the same number of atoms in the initial and final state. The more general utility of the Jacobian factors for simulations of complex systems is briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.