Abstract

From our previous work on the role of the electrostatic field strength in controlling the pH of the iso-electric point (iep)/point-of-zero-charge (pzc) of polar solids we have extended the analysis to predict that the pH of the iep/pzc of a nonpolar solid, liquid or gas-aqueous interface should occur at pH 1.0–3.0, dependant on the value assigned to water molecules or clusters at the interface. Consideration of a wide range of experimental results covering nonpolar solids such as molybdenite, stibnite, paraffin, etc. as well as hydrocarbon liquids such as xylene, decalin, and long chain ( > C 8 ) alkane oils, as well as nitrogen and hydrogen gases, all in various simple 1:1 electrolyte solutions confirm the general validity of the result. We further consider various models of the origin of the charge on nonpolar material–water interfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call