Abstract
We study the spin-1 Ising model with non-local constraints imposed by the Bak–Tang–Wiesenfeld sandpile model of self-organized criticality (SOC). The model is constructed as if the sandpile is being built on a (honeycomb) lattice with Ising interactions. In this way we combine two models that exhibit power-law decay of correlation functions characterized by different exponents. We discuss the model properties through an order parameter and the mean energy per node, as well as the temperature dependence of their fourth-order Binder cumulants. We find: (i) a thermodynamic phase transition at a finite T c between paramagnetic and antiferromagnetic phases, and (ii) that above T c the correlation functions decay in a way typical of SOC. The usual thermodynamic criticality of the two-dimensional Ising model is not affected by SOC constraints (the specific heat critical exponent α ≈ 0 ), nor are SOC-induced correlations affected by the interactions of the Ising model. Even though the constraints imposed by the SOC model induce long-range correlations, as if at standard (thermodynamic) criticality, these SOC-induced correlations have no impact on the thermodynamic functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica A: Statistical Mechanics and its Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.