Abstract

The last two and a half years have witnessed a curious debate in virology characterized by a remarkable lack of discussion. It goes by the misleading epithet “gain of function” (GOF) influenza virus research, or simply GOF. As will be seen, there is nothing good to be gained. The controversial experiments confer aerosol transmission on avian influenza virus strains that can infect humans, but which are not naturally transmitted between humans. Some of the newer strains are clearly highly pathogenic for man. It will be shown here that the benefits of the work are erroneous and overstated while the risk of an accident is finite, if small. The consequence of any accident would be anywhere from a handful of infections to a catastrophic pandemic. There has been a single open international meeting in this period, which is surprising given that openness and discussion are essential to good science. Despite US and EU government funding, no risk–benefit analysis has been published, which again is surprising. This research can be duplicated readily in many labs and requires little high tech. It falls under the definition of DURC without the slightest shadow of a doubt and constitutes the most important challenge facing contemporary biology.

Highlights

  • Science excels in making things that work: vaccines, smart phones, and airplanes

  • With a background in HIV evolution and genetics, I became drawn to the latest hot topic in virology, which is to predict the future of rapidly evolving viruses such as avian influenza A H5N1 or H7N9 [1,2,3,4]

  • At a 2014 meeting on infectious diseases, Dr Kawaoka reported experiments whereby he forced the evolution of the pandemic H1N1 2009 virus so that it could escape from natural human antibody responses

Read more

Summary

Introduction

Science excels in making things that work: vaccines, smart phones, and airplanes. This is the implicit promise made to society and one underpinned by basic science. The issue is how these avian viruses will evolve and whether we can anticipate their trajectories by performing accelerated or forced evolution experiments in the lab. Influenza A viruses are distinguished by one of 16 hemagglutinins (H) and one of 9 neuraminidase (N) proteins on the surface of the virus, essentially marking them out antigenically.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.