Abstract
A mathematical model is constructed of the equatorial electrojets flowing in the ionosphere which are generated by thunderstorms occurring at low latitudes. We use the narrow definition of the global electric circuit (GEC) that includes only atmospheric and ionospheric electric fields and currents generated by thunderstorms, and ignores the contributions of all ionospheric and magnetospheric generators. The ionospheric currents which distribute charges from the thunderstorm areas to the fair weather parts of the Earth are largest in the vicinity of the geomagnetic equator. They form the specific electrojets discussed here which are in addition to the electrojets formed by the wind dynamo. A model of the ionospheric potential which drives these currents was developed earlier and this is suitably modified here. We use an empirical model of the diurnal variation of the number of lightning strikes to define the currents up to the ionosphere from the main thunderstorm areas. A two-dimensional approximation of the ionospheric conductor is based on its high conductivity along the magnetic field. The Pedersen and Hall conductivity distributions are calculated using empirical ionospheric models; the Pedersen and Hall conductances are calculated by integration along magnetic field lines and these are used in the 2-D model of the ionospheric conductor. The spatial distributions of the ionospheric electric fields and currents are obtained by numerical solution of the 2-D ionospheric current continuity equation. The positions and the directions of the electrojets are defined by the global distribution of the main thunderstorm areas, as well as of the ionospheric conductivity, and so they strongly vary with Universal Time. As far as the generation of the equatorial electrojets is concerned, the African and Asian thunderstorm areas are more effective than the American ones since they are closest to the geomagnetic equator. There are day-time electrojets, the strength of which may be up to 175 A, and night-time ones (of up to 60 A), while the total current flowing in the GEC is not larger than 1400 A at any moment of time in our model. Usually the electrojets are a few times weaker in the night-time ionosphere because of its smaller conductivity. The equatorial electrojets of the GEC thus produce magnetic perturbations on the ground, which are in the 0.1 nT range, while there are one hundred times stronger, wind dynamo-driven electrojets and other larger, space weather-associated magnetic perturbations. Nevertheless, using their specific features these magnetic perturbations could be measured, especially at the night-time geomagnetic equator when and where they are not so disguised by other ionospheric currents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Atmospheric and Solar-Terrestrial Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.