Abstract

AbstractThe oxygen ion conductivity of polycrystalline samples of Sm‐doped ceria and of Gd‐doped ceria is studied as a function of doping fraction and temperature using impedance spectroscopy allowing the separation of bulk and grain boundary conductivity. The introduction of a fine spacing for the Sm dopant fraction allows the clear identification of the dopant fraction leading to the largest bulk conductivity. At 267°C, the largest bulk conductivity is shown for Ce0.93Sm0.07O1.965. With increasing temperature, indications of an increase in the dopant fraction, which leads to the maximum in conductivity, are found. For the grain boundary conductivity, the maximum appears at larger dopant fractions compared to the bulk conductivity. The largest total conductivity for both dopants is again found for Sm‐doped ceria. In literature, different syntheses and sample preparation methods led to larger total conductivities for Gd‐doped ceria. In this work, we demonstrate that the variation of sintering conditions leads to scattering in the conductivity over one order of magnitude. Finally, we demonstrate that, in nominally pure cerium oxide, impurities dominate the ionic conductivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call