Abstract

Translation initiation in eukaryotes is a complex process involving many factors. A key step in this process is the binding of mRNA to the 43S preinitiation complex. This is generally the rate-limiting step in translation initiation and consequently a major determinant of mRNA translational efficiency. The primary and secondary structure of the mRNA 5' noncoding region have been implicated in modulating translational efficiency. Translational efficiency was shown to be inversely proportional to the degree of secondary structure at the mRNA 5' noncoding region. Furthermore, it was shown that cap-binding proteins that interact with the 5' cap structure (m7GpppN) of eukaryotic mRNAs are involved in the "unwinding" of the mRNA secondary structure, in an ATP hydrolysis mediated event, to facilitate ribosome binding. Thus, cap-binding proteins can potentially regulate mRNA translation. Here, we discuss the available data supporting the notion that eukaryotic 5' mRNA secondary structure plays an important role in translation initiation and the possible regulation of this process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.