Abstract
This study evaluated the preparation and characterization of an efficient doped TiO2 as a novel catalyst for degradation of diazinon model pesticide using LED-activated photocatalysis. TiO2 was doped using N, NS, FeNS, and FeFNS. The FeFNS-doped TiO2 showed the highest catalytic activity in LED/photocatalysis. FeFNS-doped TiO2 is a mesoporous nanocrystal powder with a mean pore diameter of 10.2nm, a specific surface area of 104.4m(2)/g and a crystallite size of 6.7nm. LED/photocatalysis using FeFNS-doped TiO2 improved diazinon degradation by 52.3% over that of as-made plain TiO2 at an optimum solution pH of 7. The diazinon degradation in LED/photocatalysis using FeFNS-doped TiO2 increased from 44.8% to 96.3% when the catalyst concentration increased from 25% to 300%at a reaction time of 100min. The degradation and mineralization of diazinon during LED/photocatalysis with FeFNS-doped TiO2 catalyst followed the pseudo-first-order reaction model with the rate constants of 0.973h(-1) and 0.541h(-1), respectively. The FeFNS-doped TiO2 was found to be an efficient catalyst that was photoactivated using UV-LED lamps. LED/photocatalysis with FeFNS-doped TiO2 catalyst is a promising alternative to conventional UV/TiO2photocatalysis for producing free OH radicals for use in the degradation and mineralization of water toxic contaminants.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have