Abstract

Location problems exist in the real world and they mainly deal with finding optimal locations for facilities in a network, such as net servers, hospitals, and shopping centers. The inverse location problem is also often met in practice and has been intensively investigated in the literature. As a typical inverse location problem, the inverse 1-median problem on tree networks with variable real edge lengths is discussed in this paper, which is to modify the edge lengths at minimum total cost such that a given vertex becomes a 1-median of the tree network with respect to the new edge lengths. First, this problem is shown to be solvable in linear time with variable nonnegative edge lengths. For the case when negative edge lengths are allowable, the NP-hardness is proved under Hamming distance, and strongly polynomial time algorithms are presented underl1andl∞norms, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.