Abstract
Up to date, the intrinsic association of nitrate loading rate (NLR) with treatment performance of solid-phase denitrification (SPD) systems is still ambiguous. To address this issue, three continuous up-flow bioreactors were configured. They were packed with polycaprolactone (PCL) under a filling ratio of 30%, 60% or 90% and were operated under a varying NLR of 0.34 ± 0.01-3.99 ± 0.12 gN/(L·d). Results showed that the denitrification efficiency was high (RE > 96%) and stable except the case with the highest NLR, which was mainly attributed to the lack of available carbon sources. At the phylum or genus level, most of the detected dominant bacterial taxa were either associated with organics degradation or nitrogen metabolism. The difference in bacterial community structure among the three stages was mainly caused by NLR rather than the filling ratio. Moreover, as the NLR got higher, the Bray-Curtis distance between samples from the same stage became shorter. By the results of gene or enzyme prediction performed in PICRUSt2, the main nitrogen metabolism pathways in these reactors were denitrification, dissimilatory nitrate reduction to ammonium (DNRA), assimilatory nitrate reduction to ammonium (ANRA) and nitrogen fixation. Moreover, aerobic and anaerobic nitrate dissimilation coexisted in the systems with the latter playing a dominant role. Finally, denitrification and DNRA occurred under both high and low NLR conditions while nitrogen fixation and ANRA preferred to occur under low NLR environments. These findings might help guide practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.