Abstract

Abstract This study examines the characteristics and mechanisms associated with the dominant intraseasonal oscillation (ISO) that controlled eastern Tibetan Plateau summer rainfall (ETPSR) over the period 1979–2011. The results of both power and wavelet spectrum analysis reveal that ETPSR follows a significant 7–20-day oscillation during most summers. The vertical structure of the ETPSR ISO in the dry phase is characterized by a vertical dipole pattern of geopotential height with a positive center on the eastern Tibetan Plateau (TP) and a negative center on the western TP. The wet phase shows the opposite characteristics to the dry phase. The transitions between the dry and wet phases during an ETPSR ISO cycle are related to a Rossby wave train that presents as large anomalous anticyclonic and cyclonic centers that alternate along the pathway from the eastern Atlantic to southern China via the TP. It corresponds to the evolution of the phase-independent wave-activity W, which implies an eastward/southeastward energy propagation of the ISO. The dominant modes of the daily 200-hPa geopotential height as identified by the rotated empirical orthogonal function (REOF) demonstrate that the different phases of the Rossby wave train influence the upper-level circulation over the eastern TP, which then impacts precipitation in the region. Furthermore, fluctuations in the eastern Atlantic may be the key factor for the propagation of the Rossby wave train that influences the upper-level circulation and rainfall variability over the eastern TP. Results from numerical experiments using an atmospheric general circulation model support the conclusion that the fluctuations over the eastern Atlantic contribute to the ISO of ETPSR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call