Abstract

Orbital angular momentum (OAM) is a unique degree of freedom for vortex beams. It is very important to study the interference of vortex beams carrying OAM in quantum information science. In this paper, we study the interference phenomenon of vortex beams based on a stable and adjustable Mach–Zehnder (MZ) interferometer using a laser and a single-photon as light sources. Furthermore, we also show the evolution of the different initial states in the MZ interferometer, and the interferograms of initial states vary with changing the interferometer phase. Our research not only helps us to understand the special phenomenon of OAM in the MZ interferometer but also provides some theoretical and experimental support for OAM as a quantum information carrier.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.