Abstract

Auxin has been shown to exhibit a striking concentration gradient distribution in radial sections of angiosperm and gymnosperm species, in which peak auxin levels are concentrated in dividing cambial cells, while the absolute auxin concentration sharply declines toward developing secondary phloem and xylem regions. The coincidence of auxin concentration gradient across shoot tissues and xylem cell developmental gradient has prompted that auxin could act as “a plant morphogen” to provide a positional signal for cambial cell development. However, the specific location of vascular cambium and the lack of mutants altering auxin distribution in shoots of woody species made further verification experiments difficult to explore. To address this issue, different concentrations of exogenous IAA were applied to decapitated Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) trunks in this study to induce the change in the auxin concentration gradient in radial stems, and its effects on cambial activities were examined on the physiological, cellular and molecular levels. Our findings manifested that exogenous IAA treatments resulted in vast changes in endogenous hormone concentrations (including IAA, ZR, GA3 and ABA), cambial cell developmental behaviors and transcriptional activities of genes related to polar auxin transport (PAT), auxin signaling, the biosynthesis and signal transduction of other plant hormones and the genetic control of cambial activity. Based on above findings, we postulated a model of auxin concentration gradient involved in the control of cambial activity and secondary growth in tree trunks. In this model, the contrasting expression of AUX1/LAX and PIN family carriers in distinct Chinese fir wood-forming tissues dynamically modulates PAT into the cambial zone adjacent to the secondary phloem side and secondary xylem tissues, resulting in a sharp and wide auxin spatial gradient distribution across shoots in different stages of secondary growth, respectively. This change in auxin concentration gradient distribution in radial sections in turn acts on cambial developmental behaviors by modulating the expression of auxin signaling genes and key transcription factors and the production of other plant hormones in distinct woody tissues. Findings in this study provide important insights for understanding the biological significance of auxin concentration gradient existing in the radial stems of woody species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.