Abstract

Two peptides, RAWVAWR-NH 2 and IVSDGNGMNAWVAWR-NH 2, derived from human and chicken lysozyme, respectively, exhibit antimicrobial activity. A comparison between the L-RAWVAWR, D-RAWVAWR, and the longer peptide has been carried out in membrane mimetic conditions to better understand how their interaction with lipid and detergent systems relates to the reported higher activity for the all L-peptide. Using CD and 2D 1H NMR spectroscopy, the structures were studied with DPC and SDS micelles. Fluorescence spectroscopy was used to study peptide interactions with POPC and POPG vesicles and DOPC, DOPE, and DOPG mixed vesicle systems. Membrane–peptide interactions were also probed by ITC and DSC. The ability of fluorescein-labeled RAWVAWR to rapidly enter both E. coli and Staphylococcus aureus was visualized using confocal microscopy. Reflecting the bactericidal activity, the long peptide interacted very weakly with the lipids. The RAWVAWR-NH 2 peptides preferred lipids with negatively charged headgroups and interacted predominantly in the solvent–lipid interface, causing significant perturbation of membrane mimetics containing PG headgroups. Peptide structures determined by 1H NMR indicated a well-ordered coiled structure for the short peptides and the C-terminus of the longer peptide. Using each technique, the two enantiomers of RAWVAWR-NH 2 interacted in an identical fashion with the lipids, indicating that any difference in activity in vivo is limited to interactions not involving the membrane lipids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.