Abstract

This article considers the interaction of a rising bubble and a sedimenting fine particle in an incompressible viscous liquid under vibrations (ultrasound). The particle is subject to Stokes, Basset and buoyancy forces, and average force due to the inhomogeneity of the pulsating field. It is shown that the main contribution to the average force is made by interference of the external field and the field caused by the monopole mode of bubble oscillations. The interaction force is the attraction of the particle to the bubble. It is found that even weak vibrations lead to considerable increase of the effective cross-section of particle capture by the bubble. The evaluation of the efficiency of the flotation process exposed to an ultrasound action is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call