Abstract

The relationship between the flow field and flame propagation is essential in determining the dynamics and effects of turbulent flow in an optical SI engine. In this study, high turbulence flow at stable operations was achieved using 12,000 rpm engine speed, 60 kPa absolute intake pressure, 14.7 A/F, and 15 deg. BTDC spark timing. The turbulent flow field and flame propagation interplay were analyzed through the simultaneous high-speed PIV measurements of the in-cylinder flow and flame front propagation under firing conditions. The intensity of the seeder used was optimized by changing the crank angle. Successful simultaneous detection of the flame front and turbulent flow was demonstrated. Strong turbulence was produced at the flame front simultaneously with the flame movement. After ignition timing, the flame accelerated in the unburned region, and a vital turbulence region occurred.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.