Abstract

The axisymmetric interaction problem of an elastic spherical inclusion with a penny-shaped crack in an elastic space under torsion is considered. The superposition and reflection methods [3]-[4] are used to solve the mixed boundary value problem in question. With the help of the dual integral equations technique and appropriate re-expansion of the eigenfunction, the problem is reduced to an infinite system of linear algebraic equations of the second kind. The matrix elements of that system decrease exponentially along the rows and the columns. Its unique solution is proved to exist in a proper class of sequences and is shown to be represented by a convergent, in the vicinity of the origin, power series in a geometric parameter, equal to the ratio of the radius of the inclusion to its distance from the crack. This procedure provides an efficient formula for the stress intensity factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.