Abstract

AbstractPrecambrian paleomagnetic records from dyke swarms provide a unique source of information regarding the Archean geomagnetic field and more specifically the average field strength produced by the early dynamo. We sampled 16 paleomagnetic sites from the Dharwar giant dyke swarm in southern India which was emplaced between 2.365 and 2.368 Ga. Despite taking great care in selecting locations exempt of any geological disturbance, only two of these sites provided primary directions with very steep inclinations and therefore were emplaced in close to a magnetic pole. Paleointensity experiments were conducted on a subset of samples from the dyke margins. The characteristic magnetization is carried by single domain magnetite grains with a very narrow range of unblocking temperatures inferred from the sharp decrease by at least 75% of their remanence above 520°C. The paleointensity results indicate an average low field of 9.2 ± 7 µT, consistent with reported values from Canadian dyke swarms for the same period. These results combined with the Thellier‐Thellier determinations obtained so far for the Precambrian suggest that a low field period prevailed from circa 2.3 to 1.8 Ga, while the preceding and following time intervals are characterized by significantly stronger paleointensities. Although this suite of episodes is not fully incompatible with previous models for the long‐term evolution of the geodynamo, it is tempting to make the link with the recent suggestion of an early dynamo sustained within a conductive magma layer at the base of the mantle from 3.5 to 2.5 Ga which progressively declined until convection became sufficiently efficient to reactivate a strong dynamo process within the Earth's liquid core.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.