Abstract

AbstractEuxinia, a crucial geological condition, usually signifies more severe extinction events attributed to deoxygenation in Earth's history. Despite extensive exploration of various proxies in paleoredox studies, most are primarily utilized to reconstruct atmospheric pO2, the proportion of anoxic water relative to the entire basin, and broader trends in redox states. Few, however, hold the capacity to precisely delineate local euxinia within confined areas. To address this gap and gain insights into the temporal and spatial extent of benthic euxinia, we propose leveraging the synergistic analysis of total nitrogen isotopes (δ15NTN) and pyrite sulfur isotopes (δ34Spy). Our study focuses on the Triassic Chang 7 Member from the Yanchang Formation, Ordos Basin, North China. Through coupling the δ15NTN and δ34Spy systematics on 11 drill cores within the Ordos Basin, we reconstruct the temporal and spatial distribution of the benthic euxinia zone during the Chang‐7 period. Our results suggest strong spatial heterogeneity of benthic redox conditions, with the euxinia boundary shifting from the central lake to the southwestern sections. Moreover, we identify redox‐controlling factors, including organic carbon loading, water depth, and potential water circulation, and evaluate their interplay with benthic euxinia. Furthermore, the discernment of water circulation patterns may provide an innovative approach to restore the paleowind direction. These findings highlight the effectiveness of coupling δ15NTN and δ34Spy in reconstructing the local benthic redox landscape of benthic environments, and enrich our understanding of biogeochemical processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.