Abstract

Last-mile transportation (LMT) refers to any service that moves passengers from a hub of mass transportation (MT), such as air, boat, bus, or train, to destinations, such as a home or an office. In this paper, we introduce the problem of scheduling passengers jointly on MT and LMT services, with passengers sharing a car, van, or autonomous pod of limited capacity for LMT. Passenger itineraries are determined so as to minimize total transit time for all passengers, with each passenger arriving at the destination within a specified time window. The transit time includes the time spent traveling through both services and, possibly, waiting time for transferring between the services. We provide an integer linear programming (ILP) formulation for this problem. Since the ILMTP, is NP-hard and problem instances of practical size are often difficult to solve, we study a restricted version where MT trips are uniform, all passengers have time windows of a common size, and LMT vehicles visit one destination per trip. We prove that there is an optimal solution that sorts and groups passengers by their deadlines and, based on this result, we propose a constructive grouping heuristic and local search operators to generate high-quality solutions. The resulting groups are optimally scheduled in a few seconds using another ILP formulation. Numerical results indicate that the solutions obtained by this heuristic are often close to optimal %, even when multiple destinations are allowed per group, and that warm-starting the ILP solver with such solutions decreases the overall computational times significantly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.