Abstract

The classical Duplication-Loss-Coalescence parsimony model (DLC-model) is a powerful tool when studying the complex evolutionary scenarios of simultaneous duplication-loss and deep coalescence events in evolutionary histories of gene families. However, inferring such scenarios is an intrinsically difficult problem and, therefore, prohibitive for larger gene families typically occurring in practice. To overcome this stringent limitation, we make the first step by describing a non-trivial and flexible Integer Linear Programming (ILP) formulation for inferring DLC evolutionary scenarios. To make the DLC-model more practical, we then introduce two sensibly constrained versions of the model and describe two respectively modified versions of our ILP formulation reflecting these constraints. Using a simulation study, we showcase that our constrained ILP formulation computes evolutionary scenarios that are substantially larger than the scenarios computable under our original ILP formulation and DLCPar. Further, scenarios computed under our constrained DLC-model are overall remarkably accurate when compared to corresponding scenarios under the original DLC-model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.