Abstract

This paper investigates the stability of the motion in the averaged planar general three-body problem in the case of first-order resonance. The equations of the averaged motion of bodies near the resonance surface is obtained and is analytically integrated by quadratures. The stability of the averaged motion is analytically investigated in relation to the semi-major axes, the eccentricities and the resonance phases. An autonomous second-order equation is obtained for the deviation of semiaxes from the resonance surface. This equation has an energy integral and is analytically integrated by quadratures. The quasi-periodic dependence on time with two-frequency basis of the averaged motion of bodies is found. The basic frequencies are analytically calculated. With the help of the mean functionals calculated along integral curves of the averaged problem the new analytic first integrals are constructed with coefficients periodic in time. The analytic conditions of librations of resonance phases are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call