Abstract

Abstract. The High Agri Valley is a tectonically active area in southern Italy characterized by high seismic hazard related to fault systems capable of generating up to M=7 earthquakes (i.e. the 1857 Mw=7 Basilicata earthquake). In addition to the natural seismicity, two different clusters of induced microseismicity were recognized to be caused by industrial operations carried out in the area: (1) the water loading and unloading operations in the Pertusillo artificial reservoir and (2) the wastewater disposal at the Costa Molina 2 injection well. The twofold nature of the recorded seismicity in the High Agri Valley makes it an ideal study area to deepen the understanding of driving processes of both natural and anthropogenic earthquakes and to improve the current methodologies for the discrimination between natural and induced seismic events by collecting high-quality seismic data. Here we present the dataset gathered by the INSIEME seismic network that was installed in the High Agri Valley within the SIR-MIUR research project INSIEME (INduced Seismicity in Italy: Estimation, Monitoring, and sEismic risk mitigation). The seismic network was planned with the aim to study the two induced seismicity clusters and to collect a full range of open-access data to be shared with the whole scientific community. The seismic network is composed of eight stations deployed in an area of 17 km×11 km around the two clusters of induced microearthquakes, and it is equipped with triaxial weak-motion broadband sensors placed at different depths down to 50 m. It allows us to detect induced microearthquakes, local and regional earthquakes, and teleseismic events from continuous data streams transmitted in real time to the CNR-IMAA Data Centre. The network has been registered at the International Federation of Digital Seismograph Networks (FDSN) with code 3F. Data collected until the end of the INSIEME project (23 March 2019) are already released with open-access policy through the FDSN web services and are available from IRIS DMC (https://doi.org/10.7914/SN/3F_2016; Stabile and INSIEME Team, 2016). Data collected after the project will be available with the permanent network code VD (https://doi.org/10.7914/SN/VD, CNR IMAA Consiglio Nazionale delle Ricerche, 2019) as part of the High Agri Valley geophysical Observatory (HAVO), a multi-parametric network managed by the CNR-IMAA research institute.

Highlights

  • Anthropogenic seismicity has been documented since the 1920s when the subsidence due to the exploitation of the Goose Creek oil field (USA) was responsible for felt earthquakes (Pratt and Johnson, 1926)

  • We present the dataset gathered by the INSIEME seismic network that was installed in the High Agri Valley within the SIR-MIUR research project INSIEME (INduced Seismicity in Italy: Estimation, Monitoring, and sEismic risk mitigation)

  • In 2016 a dense seismic network was installed in the High Agri Valley, a NW–SE-trending intermontane basin formed during the Quaternary age along the axial zone of the southern Apennines thrust belt chain of Italy (Patacca and Scandone, 1989)

Read more

Summary

Introduction

Anthropogenic seismicity has been documented since the 1920s when the subsidence due to the exploitation of the Goose Creek oil field (USA) was responsible for felt earthquakes (Pratt and Johnson, 1926). The Italian historical seismicity catalogue CPTI11 (Rovida et al, 2011) reports seven earthquakes with Mw ≥ 4.5 in the HAV, including the 1857 Mw = 7.0 Basilicata earthquake (Mallet, 1862; Burrato and Valensise, 2008), which was one of the most destructive historical earthquakes in Italy with 11 000 casualties and extensive damage throughout the Basilicata, Campania, Apulia, and Calabria regions It has been estimated from GPS velocity and strain rate field data (D’Agostino, 2014) that the extensional opening in the axial part of the southern Apennines is about 3 mm yr−1.

The INSIEME seismic network
Seismic network layout
Seismic stations
Data quality in terms of background noise level
Data quality in terms of local ground effects
Discussion and conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call