Abstract

We used an optical tweezer to investigate the adhesion of yeast Saccharomyces cerevisiae onto a glass substrate at the initial contact. Micromanipulation of free-living objects with single-beam gradient optical trap enabled to highlight mechanisms involved in this initial contact. As a function of the ionic strength and with a displacement parallel to the glass surface, the yeast adheres following different successive ways: (i) Slipping and rolling at 1.5 mM NaCl, (ii) slipping, rolling, and sticking at 15 mM NaCl, and (iii) only sticking at 150 mM. These observations were numerous and reproducible. A kinetic evolution of these adhesion phenomena during yeast movement was clearly established. The nature, range, and relative intensity of forces involved in these different adhesion mechanisms have been worked out as a quantitative analysis from Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended DLVO theories. Calculations show that the adhesion mechanisms observed and their affinity with ionic strength were mainly governed by the Lifshitz-van der Waals interaction forces and the electrical double-layer repulsion to which are added specific contact forces linked to "sticky" glycoprotein secretion, considered to be the main forces capable of overcoming the short-range Lewis acid-base repulsions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.