Abstract

The controlling factors of the inhibition on enzymatic hydrolysis caused by residual lignin were identified with molecular level understanding of the mechanism. Residual lignin samples with different properties were isolated, characterized and added into the enzymatic hydrolysis of Avicel. It was found that the phenolic hydroxyl group (OH) was the main inhibitor in residual lignin, and the p-hydroxyphenyl OH was the crucial sub-structure that exhibited the highest inhibition and non-productive adsorption, ascribing to its higher electrophilicity and lower steric hindrance. The H-bond interaction and π-π stacking between phenolic OH of lignin and phenolic OH of tyrosine on the planar face of carbohydrate binding module of cellulase were probably responsible for the non-productive adsorption. The binding sites of H-bonds may be the H in phenolic OH of lignin and the O in phenolic OH of tyrosine, respectively, and that of the π-π stacking may be the benzene rings of them.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.