Abstract

Phospho-gypsum is an industrial solid waste discharged from the phosphate production process. The waste includes complex impurities such as phosphoric acid and its salts, fluoride, and organics. Usually, retarders are mixed in gypsum-based building materials to extend setting time. Although the effects of the impurities on hydration properties and the mechanical strength of calcined gypsum have been analyzed, the impact and mechanism of soluble phosphorus on the phospho-gypsum under retardation is yet to be defined. In this study, we employed thermogravimetry (TG), X-ray diffraction (XRD) and scanning electron microscopy (SEM) to evaluate the hydration kinetics, phase transformation, structure, and morphology of the calcined gypsum. The data showed that the retarder or soluble phosphorus prolonged the setting time. A single retarder considerably shortened the initial setting time from 95 min to 60 min, even at the lowest dosage of 0.1 wt.% soluble phosphorus. In addition, drying flexural and compressive strengths were markedly decreased. On the other hand, the induction period was advanced with extension of acceleration and deceleration stage. SEM results indicated that the crystal morphology of the gypsum changed from a long to short column or block. An EDS analysis showed that phosphates were concentrated on the surface of gypsum crystals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call