Abstract

Flexible electrothermal heaters have attracted abundant attention in recent years due to their wide applications, but their preparation with high efficiency remains a challenge. Here in this work, a highly stable and bending-tolerant flexible heater was fabricated with graphite nanosheets and cellulose fibers through a scalable papermaking procedure. Its electrothermal property can be enhanced by a hot-pressing treatment and introduction of cationic polyacrylamide (CPAM) during the papermaking protocol. The flexible heater may quickly reach its maximum temperature of 239.8 °C in around 1 min at a voltage of 9 V. The power density was up to 375.3 °C cm2 w-1. It appeared to have a high tolerance for bending deformation with various curvatures, and the temperature remained stable even under 100 bending with frequency of around 0.17 Hz. Over 100 alternatively heating and cooling cycles, it worked stably as well. It was proved to be used as wearable heating equipment, soft heaters, and aircraft deicing devices, suggesting its great prospect in the field of heat management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call