Abstract
BackgroundIn different models of hypoxia, blockade of opioid or N-methyl-D-aspartate (NMDA) receptors shows cardio- and neuroprotective effects with a consequent increase in animal survival. The aim of the study was to investigate effects of pre-treatment with Morphine or Ketamine on hemodynamic, acid-base status, early survival, and biochemical markers of brain damage in a rat model of asphyxial cardiac arrest (ACA).MethodsUnder anaesthesia with Thiopental Sodium 60 mg/kg, i.p., Wistar rats (n = 42) were tracheostomized and catheters were inserted in a femoral vein and artery. After randomization, the rats were pre-treated with: Morphine 5 mg/kg i.v. (n = 14); Ketamine 40 mg/kg i.v. (n = 14); or equal volume of i.v. NaCl 0.9% as a Control (n = 14). ACA was induced by corking of the tracheal tube for 8 min, and defined as a mean arterial pressure (MAP) < 20 mmHg. Resuscitation was started at 5 min after cardiac arrest (CA). Invasive MAP was recorded during experiments. Arterial pH and blood gases were sampled at baseline (BL) and 10 min after CA. At the end of experiments, all surviving rats were euthanised, brain and blood samples for measurement of Neuron Specific Enolase (NSE), s100 calcium binding protein B (s100B) and Caspase-3 (CS-3) were retrieved.ResultsAt BL no differences between groups were found in hemodynamic or acid-base status. After 3 min of asphyxia, all animals had cardiac arrest (CA). Return of spontaneous circulation (MAP > 60 mmHg) was achieved in all animals within 3 min after CA. At the end of the experiment, the Ketamine pre-treated group had increased survival (13 of 14; 93%) compared to the Control (7 of 14; 50%) and Morphine (10 of 14; 72%) groups (p = 0.035). Biochemical analysis of plasma concentration of NSE and s100B as well as an analysis of CS-3 levels in the brain tissue did not reveal any differences between the study groups.ConclusionIn rats after ACA, pre-treatment with Morphine or Ketamine did not have any significant influence on hemodynamic and biochemical markers of brain damage. However, significantly better pH level and increased early survival were found in the Ketamine pre-treated group.
Highlights
In different models of hypoxia, blockade of opioid or N-methyl-D-aspartate (NMDA) receptors shows cardio- and neuroprotective effects with a consequent increase in animal survival
Based on the ability of opioids to reduce the level of cyclic adenosine monophosphate, and to block Na+ channels, it would be logic to propose that opioids might prevent the disturbance of ionic homeostasis during acute hypoxia
During the first 3 min of asphyxia mean arterial pressure (MAP) consistently decreased in all groups resulting in asphyxial cardiac arrest (ACA) which eventually took place in all animals when invasive MAP dropped below 20 mmHg and remained around zero following 5 min of asphyxia (Fig. 2)
Summary
In different models of hypoxia, blockade of opioid or N-methyl-D-aspartate (NMDA) receptors shows cardio- and neuroprotective effects with a consequent increase in animal survival. The aim of the study was to investigate effects of pre-treatment with Morphine or Ketamine on hemodynamic, acid-base status, early survival, and biochemical markers of brain damage in a rat model of asphyxial cardiac arrest (ACA). Almost 35 years ago, Dr Peter Safar wrote that “cerebral recovery from more than 5 min of cardiac arrest is hampered by complex secondary derangements of multiple organ systems after reperfusion” [1] These 5 “golden” minutes determine the ability of cerebral neurones to regain ordinary function after anoxia. The aim of this experimental study in a rat model of asphyxial cardiac arrest (ACA) was to investigate the influence of pre-treatment with Morphine or Ketamine on hemodynamics, acid-base status, brain damage markers, and early survival as endpoint of the study
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have