Abstract

Acid hydrolyzed bacterial crystalline nanocellulose (BCNC) with different nanofiber morphologies, geometrical dimensions, crystalline structure and mechanical properties were obtained by adding different polysaccharides into the growing culture medium. Arabinogalactan had little effect on the characteristics of BCNC due to its negligible binding affinity to bacterial cellulose (BC). Bacterial exopolysaccharides were capable of modulating the bundling of cellulose microfibrils during BC formation, resulting in BCNC with bundled nanocrystals, high crystallinity, a less sulfated surface, and improved thermal stability and tensile properties. Xylan/BCNC and xyloglucan/BCNC exhibited the most significant improvements, including an increased length and aspect ratio, a significantly less sulfated surface and superior thermal stability and tensile properties. It is hypothesized that the improvement in CNC characteristics results from a change in amorphous cellulose formation in the native BC. This study also suggests that improved feedstocks for producing CNCs may be obtained by modulating hemicellulose production in plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.