Abstract

The present study investigated whether a differential availability of cognitive control resources as a result of varying working memory (WM) load could affect the capacity for expectancy-based strategic actions. Participants performed a Stroop-priming task in which a prime word (GREEN or RED) was followed by a colored target (red vs. green) that participants had to identify. The prime was incongruent or congruent with the target color on 80 and 20% of the trials, respectively, and participants were informed about the differential proportion of congruent vs. incongruent trials. This task was interleaved with a WM task, such that the prime word was preceded by a sequence of either a same digit repeated five times (low load) or five different random digits (high load), which should be retained by participants. After two, three, or four Stroop trials, they had to decide whether or not a probe digit was a part of the memory set. The key finding was a significant interaction between prime-target congruency and WM load: Whereas a strategy-dependent (reversed Stroop) effect was found under low WM load, a standard Stroop interference effect was observed under high WM load. These findings demonstrate that the availability of WM is crucial for implementing expectancy-based strategic actions.

Highlights

  • Working memory (WM) is the cognitive system that allows people to retain access to a limited amount of information, often in the service of complex cognition

  • The analyses of responses to the working memory (WM) probe confirmed that our load manipulation was effective in loading WM

  • Only trials on which the WM response was correct were included in this analysis2

Read more

Summary

Introduction

Working memory (WM) is the cognitive system that allows people to retain access to a limited amount of information, often in the service of complex cognition. There is growing evidence that WM plays a role in maintaining goal-directed behavior in the presence of potential distractors or contextually inadequate alternative responses. In order that our behavior can be successfully directed toward task-relevant information, both the target and competing distractors have to remain clearly separated in processing. WM has been proposed to be fundamental in this process (Lavie et al, 2004), and in selective attention, which involves maintaining a goaldirected focus on one aspect of the environment (the relevant stimulus), while ignoring irrelevant aspects. Effective selection has been suggested to require both increased processing of the relevant information (facilitation), and active blocking or inhibition of irrelevant distractors, processes that are central to cognitive control and conflict resolution (Petersen and Posner, 2012).

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.