Abstract

Fish exhibit many behaviors that involve sensing water flows with their lateral-line system. In many situations, viscosity affects how the flow interacts with the body of the fish and the neuromasts of the lateral line. Here we discuss how viscosity influences the stimulus to the fish lateral-line system. The movement of a fish's body creates flows that can interfere with the detection of external signals, but these flows can also serve as a source of information about nearby obstacles and the fish's own hydrodynamic performance. The viscous boundary layer on the surface of the skin alters external signals by attenuating the low-frequency components of stimuli. The stimulus to each neuromast depends on the interaction of the fluid surrounding the neuromast and the structural properties of that neuromast, including the number of mechanosensory hair cells it contains. A consideration of the influences of viscosity on flow, at both the whole-body and receptor levels, offers the promise of a more comprehensive understanding of the signals involved in behaviors mediated by the lateral-line system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.