Abstract

The lateral line system of fish is important for many behaviors, including spatial orientation, prey detection, shoaling, intra specific communication and entraining. The smallest sensory unit of the lateral line is the neuromast that occurs free standing on the skin and in fluid filled canals. With aid of the lateral line fish perceive minute water motions. In their natural habitat fish are not only faced with biotic water motion but also with the abiotic fluctuations caused by various inanimate sources. The detection of meaningful signals is crucial for survival, and therefore animals should be able to separate meaningful signals from noise. Fishes live in various habitats (e.g. in still water or in running water). Therefore it is not surprising that the number and distribution of neuromasts as well as canal dimension, canal shape and canal branching patterns differ among fish species. We studied how lateral line canal parameters influence the filter properties of lateral line canals. To do so we exposed artificial lateral line canals, equipped with artificial neuromasts (sensors), to the vortex street shed by a submerged cylinder and to air bubble noise. We found that certain canal parameters significantly can enhance the signal to noise ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.