Abstract

The aim of the present study was to evaluate the influence of ultrasonic activation (UA) on the setting time and flow of four endodontic sealers: AH Plus (AH), Sealer Plus (SP), MTA Fillapex (MTAF), and BioRoot RCS (BIO). Properties were evaluated as required by ANSI/ADA Specification N° 57 (2008); only the size of the specimens was modified. UA was applied using a smooth tapered ultrasonic tip coupled to a piezoelectric ultrasonic device (30% power) on the freshly mixed materials in two cycles of 20 seconds. The results were statistically analyzed using the ANOVA and Kruskal-Wallis tests, followed by the Tukey and Dunn posthoc tests, respectively, depending on the normality of the data. The shortest setting times, initial and final, were, 115 (BIO/UA) and 148.6 (BIO/UA) min, whereas the longest were 1215 (AH) and 1928 (AH) min. The MTAF sealer did not set throughout the experimental period (2880 minutes). Significant differences were observed between BIO and MTAF and the other sealers, with or without UA, both in the initial and final setting time (P < 0.05). UA did not change the initial setting times; however, it reduced the final setting of BIO (P < 0.05). The highest and lowest flow values observed were 25.52 mm (AH/UA) and 18.66 mm (BIO/UA), respectively. The AH sealer, regardless of UA, exhibited higher flow values compared to the other sealers (P < 0.05), except for the MTAF/UA group, which was the only sealer in which UA promoted a significant flow increase (P < 0.05). Under the conditions of the study, it can be concluded that the BIO, under UA, presented the lowest setting time; however, it exhibited the lowest flow values. The MTAF sealer did not reach its final setting. Moreover, the SP groups exhibited intermediate results in all analyses. In summary, only the final setting time of the BIO group and the flow values of the MTAF group were influenced by UA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.