Abstract

Myoblast is a kind of activated muscle stem cell. Its biological activities, such as proliferation, migration, differentiation, and fusion, play a crucial role in maintaining the integrity of the skeletal muscle system. These activities of myoblasts can be significantly influenced by the extracellular matrix. Collagen, being a principal constituent of the extracellular matrix, substantially influences these biological activities. In skeletal muscle, collagen I and III are two kinds of primary collagen types. Their influence on myoblasts and the difference between them remain ambiguous. The purpose of this study is to discover the influence of collagen I and III on biological function of myoblasts and compare their differences. We used C2C12 cell line and primary myoblasts to discover the effect of collagen I and III on proliferation, migration and differentiation of myoblasts and then performed the transcriptome sequencing and analysis. The results showed that both collagen I and III enhanced the proliferation of myoblasts, with no statistical difference between them. Similarly, collagen I and III enhanced the migration of myoblasts, with collagen I was more pronounced in Transwell assay. On the contrary, collagen I and III inhibited myoblasts differentiation, with collagen III was more pronounced at gene expression level. The transcriptome sequencing identified DEGs and enrichment analysis elucidated different terms between Type I and III collagen. Collectively, our research preliminarily elucidated the influence of collagen I and III on myoblasts and their difference and provided the preliminary experimental foundation for subsequent research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.