Abstract
AbstractA high-resolution numerical investigation of a cold-air pooling process (under quiescent conditions) is carried out that systematically highlights the relations between the characteristics of the cold-air pools (e.g., slope winds, vertical temperature and wind structure, and cooling rate) and the characteristics of the topography (e.g., basin size and slope angle) under different ambient stabilities. The Advanced Regional Prediction System model is used to simulate 40 different scenarios at 100-m (10 m) horizontal (vertical) resolution. Results are within the range of similar observed phenomena. The main physical process governing the cooling process near the basin floor (<200 m in height) was found to be longwave radiative flux divergence, whereas vertical advection of temperature dominated the cooling process for the upper-basin areas. The maximum downslope wind speed is linearly correlated with both basin size and slope angle, with stronger wind corresponding to larger basin and lower slope angle. As the basin size increases, the influence of slope angle on maximum downslope wind decreases and the maximum is located farther down the slope. These relationships do not appear to be sensitive to stability, but weaker stability produces more cooling in the basin atmosphere by allowing stronger rising motion and adiabatic cooling. Insight gained from this study helps to improve the understanding of the cold-air pooling process within the investigated settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.