Abstract

The influence of InGaAlAs waveguide composition on the photoluminescence and electroluminescence of 1550 nm spectral range heterostructures based on thin strained In0.74Ga0.26As quantum wells has been studied. An approach is proposed that allows based on the analysis of electroluminescence to carry out a comparative analysis of the deferential gain in fabricated laser diodes. It is shown that decrease of the molar fraction of aluminum in waveguide InGaAlAs layers matched in lattice constant with InP leads to falling of integrated photoluminescence intensity, however, laser diodes with In0.53Ga0.31Al0.16As waveguide layers demonstrate a higher differential gain compared to laser diodes with In0.53Ga0.27Al0.20As waveguide. Keywords: quantum well, molecular-beam epitaxy, photoluminescence, electroluminescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.