Abstract
This study aims to determine the effect of the concave shoulder angle of the FSW tool on heat generation rate and temperature simulation results. The FSW tool used in this study is the FSW tool with straight cylindrical geometry, tapered cylinder, hexagonal, and tapered square. Calculation of heat generation rate is carried out for all FSW tools, then the optimal one is selected and then simulated. The process of calculating heat generation rate and simulation using the Taguchi method has 4 factors, each of which has 4 levels. The factors used in this study are tool rotation speed, welding speed, concave shoulder angle, and tool tilt angle with temperature response. on the weld joint. The results of this study indicate that the influence of the concave shoulder angle on the heat generation rate and temperature simulation is very influential. Based on the results of the heat generation rate calculation, the FSW tool with hexagonal pin geometry was chosen to be simulated. The simulation results show that the selected process parameters are tool rotation speed of 1208 rpm, welding speed of 90 mm/s, concave shoulder angle of 5°, and tool tilt angle of 3°. From the selected parameters, it was experimented with to produce a fairly good connection even though there were still surface defects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have