Abstract

The stabilities and reactivities of two transition metal ([Formula: see text], Zn)-doped structures of C[Formula: see text] fullerene have been investigated by density functional theory approach. We have observed a noticeable structural change in pristine C[Formula: see text] due to the substitution of one of its carbon atom by Cu or Zn atom. From our findings, it is found that the energy gap of C[Formula: see text]Cu and C[Formula: see text]Zn increases with respect to pristine C[Formula: see text], thus making the two doped fullerenes more stable than their pristine counterpart. The reactivity parameters such as chemical hardness, chemical potential and electrophilicity index for these structures are also studied. Interestingly, our calculations reveal that both the doped fullerenes obey the maximum hardness principle and minimum electrophilicity principle. Also, from the electronic absorption spectra analysis, it can be inferred that the maximum absorption peak of the two heteroatom-substituted fullerenes C[Formula: see text]Cu and C[Formula: see text]Zn are shifted towards the longer wavelength region as compared to the pure C[Formula: see text] fullerene, which clearly indicates that a red shift is introduced on account of doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call