Abstract

Hardness and electrophilicity values for several molecules involved in different chemical reactions are calculated at various levels of theory and by using different basis sets. Effects of these aspects as well as different approximations to the calculation of those values vis-à-vis the validity of the maximum hardness and minimum electrophilicity principles are analyzed in the cases of some representative reactions. Among 101 studied exothermic reactions, 61.4% and 69.3% of the reactions are found to obey the maximum hardness and minimum electrophilicity principles, respectively, when hardness of products and reactants is expressed in terms of their geometric means. However, when we use arithmetic mean, the percentage reduces to some extent. When we express the hardness in terms of scaled hardness, the percentage obeying maximum hardness principle improves. We have observed that maximum hardness principle is more likely to fail in the cases of very hard species like F(-), H(2), CH(4), N(2), and OH appearing in the reactant side and in most cases of the association reactions. Most of the association reactions obey the minimum electrophilicity principle nicely. The best results (69.3%) for the maximum hardness and minimum electrophilicity principles reject the 50% null hypothesis at the 2% level of significance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call